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The Finite Integration Technique usually relies on a Cartesian mesh system whose planar facets in general don’t coincide well
with the simulated structure’s material interfaces. This causes the simulation’s error to be relatively high and, furthermore, degrades
the method’s convergence rate. This contribution proposes a generalized formula for representing the actual structure’s material
distribution on a discrete mesh system without compromising accuracy. In a second step, approaches to utilize the technically
challenging generalized formula for practically relevant applications are demonstrated.
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I. INTRODUCTION

MESH BASED simulation methods generally require the
simulated object’s geometry and material distribution

to be discretized in order to obtain a finite number of un-
knowns to solve for. Finite Element methods typically utilize
an unstructured tetrahedral mesh that adapts well to material
discontinuities. The Finite Integration Technique (FIT) [1], on
the other hand, is known to offer less geometrical flexibility,
because it is usually applied to structured hexahedral meshes
and, hence, causes the object to be represented less accurate.
In many cases, it is still competitive or even superior neverthe-
less, due to fast and efficient algorithms that result from the
structured mesh approach.

Despite its computational efficiency, it is highly desirable to
be able to use the Finite Integration Technique for arbitrarily
shaped objects without introducing an error that would deteri-
orate the otherwise achievable second order convergence rate
[2]. Various attempts have been made in order to mitigate this
error. For interfaces to perfect electric conductor for example,
a technique to retain the numerical method’s original conver-
gence rate is well-established [3],[4]. For dielectric interfaces,
on the other hand, ongoing research has not yet culminated in
a method as efficient and at the same time robust as [3],[4].
The most promising approaches rely on an artificial anisotropic
material tensor ([5], [6]). A study on methods based on a priori
known field behavior can be found in [7].

This work takes a theoretical approach on accurately defin-
ing a generalized material parameter in the scope of the Finite
Integration Technique. Afterwards, different ways of applying
it in practice are described and preliminary results promise a
very beneficial outcome compared to conventional methods.

II. FINITE INTEGRATION TECHNIQUE

By evaluating the integral form of Maxwell’s equations on
a staggered grid system consisting of a primary (G) and a
dual (G̃) mesh (cf. Fig. 1), a matrix-vector formulation can be
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Fig. 1. Portion of a staggered Cartesian grid system (G: primary mesh, G̃:
dual mesh) with material interface (dashed line).
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For a detailed explanation of the symbols and their rela-
tionship cf. [1]. The electric grid voltage vector _e contains
the electric field integrated along each primary edge Li. The
corresponding electric grid flux is obtained by integrating the
electric displacement ~D over the dual facet Ãi:

_e i =

∫
Li

~E · d~s,
__

di =

∫∫
Ãi

~D · d ~A (3)

Similar to the well-known identity ~D = ε ~E, there exists a
relationship between electric grid voltages and fluxes, which
can be expressed by means of a diagonal matrix Mε:
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In order to derive a closed form expression for Mε, its ith
main diagonal entry is evaluated using (3):

Mε,i =

__

di
_e i

=

∫∫
Ãi
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III. GENERALIZED MATERIAL AVERAGING

Described in detail in [8] and also from a different perspec-
tive in [9], (5) can be reasonably approximated by
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for a two-dimenional computational domain. The primary
edge’s direction (x, y or z) has to be substituted for ξ and
〈ε〉Ãi

stands for the permittivity’s mean value over the dual
area Ãi, while

〈
ε−1
〉
Li

is the inverse permittivity’s mean along
the primary edge Li. ~Et|Pi

and ~Dn|Pi
represent the tangential

field and normal displacement evaluated at the intersection
point of primary edge and dual facet Pi (cf. fig. 1). This local
approximation will be shown to enable the global algorithm to
maintain its second order convergence rate, even if the material
interface is not aligned with any of the mesh’s facets.

Under certain conditions, (6) approximates to one of the
following expressions, that are well-established [7]:
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(7)

In particular, if the interface is parallel to the ξ-directed edge,
the dot product ~eξ · ~Dn|Pi vanishes, ~eξ · ~Et|Pi cancels out and
M
‖
ε,i results. Analogously, M⊥ε,i follows for a perpendicular

interface. The same happens if either the tangential electric
field or the normal displacement vanish at the interface, which
is also predicted by [7].

Because all these cases are incorporated, (6) can be consid-
ered a generalized material averaging formula, which, however,
has a significant disadvantage compared to its simplifications. It
depends on the electric field and displacement, which disables
it from being calculated in preprocessing directly. The follow-
ing section describes two methods of applying it to practical
simulations anyway.

IV. APPLICATION

A. Iterative Approach

The problem that (6) requires knowledge of the fields that
are yet to be simulated can be circumvented by an initial
solution, that is obtained based on one of the expressions from
(7). Assuming that this solution is reasonably accurate, the
required field information is extracted and incorporated in (6).
The solver is then started again, yielding an even more accurate
solution than the initial one. This process is repeated iteratively
until the solution has converged in a meaningful sense.

B. Non-Diagonal Material Matrix

In order to avoid solving several times, the necessary fields
can be implicitly integrated in the material matrix M

‖
ε . For that

purpose _e i itself and a number of neighboring grid voltages
are investigated by means of their approximations represented
by the denominator of (6). Assuming that ~Et|Pi and ~Dn|Pi

are
constant over the small area spanned by the grid voltages taken
into account, this yields a set of equations describing each
grid voltage’s dependence on ~Et|Pi

and ~Dn|Pi
. Solving this

overdetermined system of equations in a least squares sense
and inserting the solution into the nominator of (6) gives an
explicit relation between the grid flux

__

di and its corresponding,
as well as its surrounding, grid voltages. This relation can
be interpreted as a local material matrix, which contributes
one row of the global material matrix M

6
ε . Consequently, this

matrix is no longer diagonal and, furthermore, not symmetric.
Note, that the above approaches are not specifically linked to

a certain kind of solver. Until now, they have been successfully
applied for solving 2D and 3D Maxwell’s equations in the
electrostatic regime and in the resonant time harmonic case.
The investigated material interfaces were chosen to be smooth
in order to avoid cases that require special treatment. Prelim-
inary results (cf. fig. 2) demonstrate the generalized material
averaging formula’s effectiveness by means of a convergence
analysis. The depicted graphs represent the relative error of an
electrostatics solver compared to a known reference solution.
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Fig. 2. Relative error of an electrostatics solver in dependence of the mesh
step size ∆.

In case of the conventional material averaging procedure this
error clearly converges only linearly with respect to the mesh
step size ∆, as expected. The generalized approach, on the
other side, not only reduces the error significantly, but also
retains a convergence rate of second order.
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